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Definitions

Network — Any structure containing interconnected elements.
Circuit — Usually physical structure constructed from electrical components.

(A) Linear Network: response proportional to excitation. Superposition applies:
If e(t) =w () and e,(t) =w,(r)
Then : J\ Ci(?c’l\o <_.<3-A,8A
ke +k, e, () =k w()+k, w,(1) )
(B)  Time-Invariant Network: e(f) — w(¢)relation the same ift — 7 +¢,. Time
varying otherwise.
(C)  Passive Network: EM encrgy delivered always non-negative. Specifically:
!
E(0) = [v(x)i(x)dx 20 '
Y Y /( B . ‘
» P e =9 am_o\/)
or Y . e v o > y
: ic’{) OLUNQ Cjk(“) YU - 4’4 | Ched (d ‘:L
f
E(r) = [v(x)i(x)dx + E(ty) 20 “eferenee |, .
" \ 6.0 .ﬂ-bo’?\/ﬁ
This must be true for any voltage and its resulting current for all t .

(D)
(E)

(F)

Otherwise, active.

Lossless Circuit: input energy is always equal to the energy stored in the network.
Otherwise, lossy.

Distributed Network: must use Maxwell’s equation to analyze. Examples:
transmission lines, high speed VLSI circuits, - E < .

& .
Memoryless or Resistivify Circuit: no energy storing elements. Response
depends only on instantaneous excitation. Otherwise, dynamic or memoried
circuit.
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(G)  Reciprocity: response remains the same if excitation and response locations are
interchanged. Specifically:
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Otherwise, non-reciprocal.
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(H)  Lumped Network: physical dimensions can be considered zero. In reality, much
smaller than the wavelength of the signal.

e,

KN/ L.

[y
vy

A\
®

(b}

{3 Continuous-Time Circuit: the signals can take on any valuc at any time.

\ADA, = C—&*{;Qg - W‘ ’LI%LQ_
)] Sampled-Data Circuit: the signals have a known value only at some discrete a:‘ ]

time instances. Digital, analog circuits.

An ideal RLC circuit is lincar, time-invariant, passive, lossy, reciprocal, lamped,
dynamic continuous-time network.
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(A) IdealR,L,C: =0

Veltage-Current Relationship

Element Parameter Direct Inverse Symbol
i +
Resistance R _ B I . ‘ :
Reskstor Conductance G v= Rr P= RT‘ = Gv R v p
y . (2}@0&@?@%
Inductance L L i ey Lo i ! N ‘
G\M lndl{c!or lnverse Inductance T v =L e i(t) = _‘[\(.\)dx + (0} N v G%(T*C)/'Ew{;{f’n/)
O/\A)L Capacitance € - IR I VR I & L+ e 4
Capacitor Elastanco D i= pr \({)7 E{l(.\)d\ +v(0) ¢ v “D \Z Qf/ e
Table 1

Each passive;

Assuming standard references, the energy delivered to each of the elements starting at a
time when the current and voltage were zero will be:

E.(f) = f Ri*(x)dx 20 FEN (67)
(1)

E,(f) = de’(”z( )d( fLra'z =-~Lr (=0 (68)
a'/c ) o

E () = f C 2 p(x)dx = f Cv'ay =~Cv (r)a() (69)

N 2. |

I

R N ¢
(\_/7 Wrc""!“)"? ) “DW ld}t%f) t’”{g J

EC = ? :\i}tis-’rw{? A %ﬁ/(%/é
E.\g %—3 »;D/E‘J/{/’U\&;‘_‘eal_ ‘QMG’J‘%‘/&
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Ideal Transformer:

c-—~+ iy n:1 2 4—-a c-—r I 1l jy —
* ) o * % ' ° o "t
Vy E V. TV g E V'S R N
o , o o " Np = =, K,
i Ideal ldeal

T (b)

Fig. 6 An ideal transformer

Defined in terms of the following v-i relationships:

— ban rrecdio

—_
vy = v, (70a)
iy =-ni (70b)
or
v, 0 nlii 20
iy| |-n 0O v, (702)
v, = nv, = —nRi, = ("’ R)j, (71)

Rahr\ll/dl‘] e r\? E)

At the input terminals, then, the equivalent resistance is 7R, Observe that the
total energy delivered to the ideal transformer from connections made at its
terminals will be

f

E(t) = f (v ((.\')i, (x)} + v, ()i, (x))dx =0 (72)

—w

J— 4"’"\‘»»«&@""\'"”

¥ O

i

Lossless, memoryless!

The right-hand side results when the v-i relations of the ideal transformer are
inserted in the middle. Thus, the device is passive; it transmits, but neither stores
nor dissipates energy.

Memoryless!
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\ It
(93} ( Physical Transformer:

Ly: primary self-inductance

Twe. (w;ff,

M: mutual inductance

H@Mﬁ

Fig. 7 A transformer

The diagram is almost the same except that the diagram of the ideal transformer
shows the turns ratio directly on it. The transformer is characterized by the
following v-i relationships for the reference shown in Fig. 7:

m mackual -l

di
By Ay LS 3
g dt * dt (733)
And TQ\\*’ k'w‘“‘wj L‘“Q)‘?g “dic it
VLN _‘ﬁz
VT M T (73b)

Thus it is characterized by three parameters: the two sclf-inductances L; and L,
and the mutual inductance M. The total encrgy delivered to the transformer from
external sources is

E(f) = f [ ()i (x) + v, ()i ()

iysfy

= f Li.di; + f Md(ii,) + f Lyj, di, (74)

/s
= E(L,i,z +2Mij, +Li,) =0 oz o FWM}J
Ly X2 Mocr '1“2'. Mj)wm )

It is casy to show that the last linc will be non-negative if

’ M
Wepee W“C?r?;{ o ! IL =k’sl \\ / (75)

Since physical considerations require the transformer to be passive, th:s condltlon
must apply. The quantity k is called the coefficient of coupling. Its maximum
value is unity for a closely-coupled transformer, '

X
S
(-3._-0
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)
A transformer for which the couplifig coeflicient takes on its maximum
value k=118 called a perfect, or pérfectly coupled, transformer. A perfect
transformer is not the same thing as an ideal transformer. To find the

difference, turn to the transformer equations (73) and insert the perfect-
transformer condition M =\/ LiLy; then take the ratio vifvy. The result
will be '

dl _ i
o ‘+JL1L2 ,f
— = dtz_ /L—1/L2 (76)

vy e di

L1 2_+L2 d

2

This expression is identical with v; = nve for the ideal transformert if
n=./L1/Lz. (77)

Next let us consider the current ratio. Since (73) involve the derivatives
of the currents, it will be necessary to integrate. The result of inserting

the perfect-transformer condition M= \/ LiL, and the value n=
v/ Li[Lz, and integrating (73a) from 0 to ¢ will yield, after rearranging,

i;(t)m-—}lig(t)+{ Ivz( dx+[il(0)+%i2(0)]]. (1)

This is to be compared with i; = —isfn for the ideal transformer. The
form of the expression in brackets suggests the v-i equation for an induc-
tor. The diagram shown in Fig. 8 satisfies both (78) and (76). It shows
how a perfect transformer is related to an ideal transformer. If, in a
perfect transformer, L and L; are permitted to approach infinity, but in
such a way that their ratio remains constant, the result will be an ideal

transformer.
y T T T T 1
i I I
| [
O— i = l O
| 1 . . | \
| nf2 2
3 L} ’ § l
; o ! 1‘) 4
)
i
v’ i | 4 e
i . ideal i
] ]
L o o e e e e e 4

Perfect transformer

Fig. 8. Relationship between a perfect and an ideal transformer,

Losssless, memoried element.
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(D)  The Gyrator:

%‘K(‘I’/\VQ«\\A?W AR
Definitions: /
*  Port: Two termh;als;};voth input leads always carrying the same current.
*  Gyrator: A two po network requiring active components for realization.

of R’

s Iy U iy *mo o_"'::ii—“ @ f2 *_o
+ + e rd
s Vi ) C L{} Vy ) C Ve
J para »«~f~"~ﬁ9f»ﬁ, . . i f :
pr—— o o—- SRt

Ay (a) (b)

- “ Fig. 9 A gyrator
\/q@> - \,1\2 ig. 9 A gyrat

Often used to transform (convert) impedance into a different kind. Generally,

2 ]
. ! ~ = 0 0F F Aemond
Come dowarn osalon s =g & = A A
v, (k) o |
DU O LA -
' \ or =
. or Fig. 9(2) " Vy=ri. v, 1r 0ilh (792)
5 et {4
5 . Vi=ri, W] _[o i
Zw‘k h:((;‘ For Fig. 9(b) V, = —ri or [VJ [—?' olls (79b)
E(t)= f (v, + Vi, Ydx = f [(=ri,)i, + (rip)i, ]dx —_'-0‘ (80)
Lowsline .

4@5,:?%-@ d—*»}‘ra,

;. PAT .

Fig. 11 Gyrator terminated in a capacitor C

s

MQJM@W&L&M:»« L * ) (

—
Mo -3¢ "’/(‘{“bif)((\{)

dv . . . . . .
iy = ~C~“~aw'}3*. Therefore, upon inserting the v-i relations associated with the

gyrator, we observe that

T dv,) L d(ri) diy o - diy
.:E'-—-nz-— I( C dt)_,cwdt r Cdm Ldf (82)
o ¢ =1 ki
{ 2 .
‘ N . L= C /{1 = 1 mA -7 \/,2 = 4V
P s iy dmh = vim AV

Viorh - e rocal !

-(—\T‘E/?f ) 2’/ P
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(The first one is more practical, using transconductors)
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Figure 7-24 Floating-inductor simulation using gyrator
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The Riordan circuit using two op-amps: \/
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\/¢s)
P Va’lﬁ)

1.cs) ey

v oz \n 2, Kb 2, % Z W oZ
A ey PO oy

G(C
Qfm,m_{:zfz* Wipnt
S = o > phaser | be stable , tdsal

f

N V- 3 sam 2t

1 Rl
e

1

S 2 Lo 245 S R/

oo din 4 ﬁ/ S

Whed in Yot oy

(b J/L‘!’Lé Tl ?v&«d {,

"\ neote e R A I

AAAAA
v

Figure 7-19 The Ridfdén circuit; (a) basic circuit;

(b) used as an inductor; {c) used as a gyrator
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A circuit which uses (wo grounded-output op-amps and is useful for the
realization of either GICs or Glis is shown in Fig. 7-19a.1 The input impedance Z
can caSIly be found, as follows. When we, rccall that lhe mpm voltage of an
op-amp is very nearly 2ETO, .

o ~1
Iy=1,
Iy~ 1,

Here we assumed, as usual, that the curre:__ _1_:_1 the input leads of the op-amps

is zero.
Working backward in (7-63) leads 10

z z Z,Z Z 2\ 2
Vziszszuzsxmls??zsz—1,?25:1, 2 g LTS
4

Z, Z, 7, 7,7,
{7-64)
V  Z,Z.Zs
7V D2 7.65
Hence ; 7.7 {7-65)

If Z5 is regarded as a load impedance, the circuit behaves like a GIC; (7-46)
takes the form

26) = f()Zols)  SO5) = —{%}; (7-66)

II, for example, Z, = R;, Z;, = 1/sC,, Zy=R,, Z,=R;, and Z; = R;
{(Fig. 7-19b), then f{s) = R, Ry /A(1/sC,)R,} and

R, R, Ry C3 R Ry ]
7o L R = BRI - 7-67
e T R, s 67

Hence, the input impedance is that of an induetor, with an equivalent inductance
value L, = R, C, Ry R /R,

As (7-67) suggests, and as can be directly verified from (7-65), the two-port
formed by regarding the terminals of Z, as an output port is a gyrator if all other
impedances are purely resistive (Fig. 7-19¢). More generally, il the terminals of Z;
(or Z, or Z,} constitute the output port, the circuit of Fig. 7-19q is a GIC; if the
terminals of Z, {or Z,) form the output port, the resulting two-port is a GIL

Assume now that we choose Z, and Z, as capacitive and Z,, Z;, and Z; as
resistive impedances. Then (7-65) gives, for s = jo,

R,RyR
Z(jw) = o 2T = 2R CyR;Cy Ry (7-68)

T (Wl )(1joCy)

We note that Z(jw) is pure real,; negalne, and :a_function of w. Such an
impedancet is called a ﬁequwwl-dcpemle_ Hegative resistance (FDNR). A slightly
dillerent form of FDNR can be obtained, ¢.g. by choosing Z; and Z, as capaci-
tors and Z,, Z,, and Zg as resistors.’ Then_ '

- "R E
Cl R,Cy R, w?

Zljw) = — {7-69)

As we shall see fater, FDDINRs are very uselui for the design of aclive filters.

‘ém S
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